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We study the Hamiltonian of a two-level system interacting with a one-mode 
radiation field by means of the Wigner method and without using the rotating- 
wave approximation. We show that a phenomenon of collapses and revival, 
reminiscent of that exhibited by the Jaynes-Cummings model, takes place in the 
high-coupling limit. This process appears as irreversible or virtually reversible, 
according to whether the semiclassical regime is chaotic or not. Thus, we find 
a new mechanism for dissipation in the quantum domain. 

KEY WORDS: Chaos; quantum irreversibility; spin-boson Hamiltonian; 
Wigner distribution. 

1. I N T R O D U C T I O N  

Since the 1975 paper of Li and York (1) in which the term chaos was intro- 
duced, this dynamical  concept  has steadily found increasing application in 
unders tanding all manner  of natural  phenomena/~-5) Chaot ic  mot ion  is an 
implicit proper ty  of nonlinear systems arising in discrete mappings ~6) and 
in cont inuous  low-dimensional  dynamical  equat ions (v) representing classi- 
cal phenomena.  Its precise mathematical  definition is still somewhat  
flexible, but  does entail a sensitive dependence on initial conditions for a 
deterministic, nonlinear dynamical  system and solutions to these equations 
that  are highly irregular, i.e., random. (8) The macroscopic  world of the 
weather, (9) the heart, (1~ and the growth of populat ions (11) all seem to be 
strongly influenced by chaos. Herein we use a model  system to examine 
how chaos in the macroscopic  domain  manifests itself in the microscopic, 
which is to say how the system properties leading to the existence of  
chaotic solutions in the semiclassical description of the dynamics are 
manifest in the corresponding fully quan tum mechanical  description. 
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In Section 2 we apply the Wigner distribution method to the quantum 
system of a two-level spin coupled to a coherent field. The semiclassical 
equations for this spin-boson system can have chaotic solutions in certain 
parameter regimes. It is found that the Liouvillian determining the evolu- 
tion of the Wigner distribution has two parts, one containing this semi- 
classical behavior and the other arising from purely quantum effects; the 
two effects compete against one another. (14'~5) A reduced Wigner distribu- 
tion is introduced in Section 3 in order to provide a systematic approxima- 
tion scheme for numerically integrating the quantum and semiclassical 
equations of motion. In Section4 it is shown using the Lyapunov 
exponents that the spin-boson system is ergodic in the parameter regions 
where the solutions to the semiclassical equations are chaotic. 

The numerical integration of both the exact quantum mechanical 
equations and the semiclassical equations for the spin-boson system is dis- 
cussed in Section 5. Therein it is demonstrated by means of the entropy for 
the spin subsystem that the full nonlinear dynamic equations destroy the 
phenomenon of "collapse and revival" of the wave function, (16-2~ which 
suggests that chaos leads to quantum irreversibility, i.e., that quantum dis- 
sipation need not be a many-body effect, but can also be a manifestation 
of chaos in the quantum domain. (~5) In Section 6 we record the salient 
conclusions from the present investigation. 

2. S P I N - B O S O N  H A M I L T O N I A N  

Let us examine the application of the Wigner distribution method to 
a quantum mechanical system of sufficient complexity that its semiclassical 
equations of motion have chaotic solutions. We investigate one of the 
simplest such systems, the spin-boson Hamiltonian: 

1 ~ g ~ 
H =  - ~ COo~rz + ~ ax(b +/~*) + f2/;*/~ (2.1) 

where /~ (/;*) is the annihilation (creation) operator with commutation 
[/~, 3*] = 1; 0 = (/~ + b*)/(2f2) 1/2 and [3 = i(/~* -/~)(g2/2) 1/~ are the coordinate 
and momentum operators of our oscillator with frequency f2; and #x and 
5z are spin matrices. Herein we study the dynamics of the spin-boson 
system with the initial condition 

6~1_+)= ___1_+) (2.2) 

and the boson field is a coherent State characterized by the average number 
of photons (n) .  The equations of motion for this system are analogous to 
the quantum optics model of Jaynes and Cummings (JCM) for a two-state 
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atom interacting with the single mode of an electric field (22) in the rotating 
wave approximation (RWA) of (2.1). As written, (2.1) describes a spin-l/2 
dipole in a single-mode magnetic field directed along the z axis. A system 
of this kind has recently been studied by Graham and H6hnerbachJ 23) 
They show that a semiclassical approximation of this system exhibits 
chaotic dynamics for sufficiently strong coupling g. Similar results have 
been found by Belorov et aL (24) and Milonni et alJ TM A brief discussion of 
the present analysis has been given by Bonci et al. (15) 

The question we address here is: What is the influence of the classi- 
cally chaotic trajectories on the solutions to the Schr6dinger equation? 

We shed some light on this difficult question using the phase space 
methods of ref. 13. We extend the arguments used earlier (13) so as to be 
applicable to the spin-boson problem. For this system the pseudo- 
probability function reads 

C - - i k  �9 x 

p~(x, q, p; t)= f ~ dk f e-(iq~+p~) (2n) 2 dq dp F(k, c~, ~; t) (2.3) 

where F(k, c~, r; t) is the quantum characteristic function defined by 

F(k, c~, r; t) = Tr {e i(~le-~ + g2~y + ~z)ei(~o + ~)fi(t) } (2.4) 

where tS(t) is the density operator for the complete system. Note that (2.3) 
and (2.4) extend the usual treatment of the Wigner distribution to include 
spin. 

The variables x = (xl, x2, x3), p, and q are the phase-space variables 
associated, via a generalized Weyl rule, (21) to the spin-boson operators: 
6 j ~ x j ,  O~q,  and ~p.(14,15) The average values of these operators on 
the statistical system described by the density matrix fi are given by 

(6j)( t)  = f dx dq dp Xjpw(X, q, p; t) (2.5a) 

(gt)(t) = f dx dq dp qp~(x, q, p; t) (2.5b) 

The equation of evolution for the Wigner distribution (2.3) is given by 

?t p~(x, q, p; t) = (L~, + 5bQGO) pw(X, q, p; t) (2.6) 

where, after some substantial algebra, 

~~ = ~o (x l  dx2 Oxi j+2gq(x3  x2 

+ g22q=-P-Z--+opoq gxl-~p (2.7) 
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and 

& l  - x l x ,  (2.8) 22oQ0 D - g -~p Ox I (~x 2 XlX2 

The operator 5~ol is identical to the Liouvillian of a classical dipole inter- 
acting with a classical oscillator, i.e., this term alone corresponds to the 
semiclassical set of equations discussed by various authors. (26) We refer to 
the calculations based on the study of the single trajectory solutions of the 
nonlinear dynamical equations as the semiclassical predictions. In this 
regard we point out a significant feature of the analysis that was apparently 
overlooked in previous investigations having to do with chaotic trajec- 
tories. (2>2s) These earlier studies focused on individual trajectories and 
gave them physical meaning; however, from (2.5) even when s is 
neglected, it is only the ensemble that has physical significance, not the 
individual trajectories. ~ 

The term ~QGD in (2.8) has a number of significant implications. First 
of all, since spin does not have a classical analogue, the classical limit is not 
obtained by taking the h --+ 0 limit as one would in a strictly (q, p )  system. 
Furthermore, the s operator does not explicitly contain h. Second, 
LPQa D has a diffusion-like structure, but the state dependence of the "diffu- 
sion coefficient" results in its not being positive-definite. It has recently 
been shown by Roncaglia et al. O4) that if the oscillator is coupled to a heat 
bath so as to transmit to the spin-l/2 dipole standard thermal fluctuations, 
then this term results in the average value of the z component of the dipole 
changing from a Langevin (classical) function to the hyperbolic tangent 
(quantum). In other words, this term, coined the quantization generating 
diffusion (QGD)  by these authors, (14) ensures that the dipole retains its 
quantum nature. The operator ~4'oa D acts as an antidiffusional mechanism; 
it competes against thermal fluctuations and constrains the dipole, which 
otherwise would freely diffuse over all possible orientations, to vacillate 
between two possible orientations. It seems that in the absence of diffusion 
this term is inactive; it is only activated with the onset fluctuations, either 
thermally or chaotically induced. 

The explicit form of the nonlinear equations of motion given by the 
Hamiltonian (2.1) is 

3~ 1 = ( .OoX 2 

2 2 --~ - - ( . D o X  1 - -  2ge[~tx3q 
2 3 = 2gel~tx2q (2.9) 

O = p  

1) = - - ( 2 2 q  - -  g x  l 
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Note that these equations describe the evolution of the spin-boson system 
using the phase space variables and not the quantum mechanical operators. 
We now wish to solve these equations, at least within some systematic 
approximation scheme. A rigorous analysis of (2.9) could treat the terms 

ef~tx3 q and er'x2 q 

as additional variables and in this way the dynamical equations for these 
variables would be extended to the same infinite set of linear differential 
equations that one would obtain using the Heisenberg picture. The most 
direct way to truncate the infinite hierarchy of linear differential equations 
is to make the following approximation: 

er"xjq ~- ( ePtxj )( e~ q ) (2.10) 

It is important to appreciate that although (2.10) resembles the semi- 
classical factorization 

(djO)(t) ~ (~j)(t)(O)(t) (2.11) 

it is in fact quite different. Equation (2.11) applies to the breaking of 
correlations in the averages over the quantum mechanical variables, 
whereas (2.10) applies the analogous factorization assumption to a single 
trajectory. Once we neglect the contribution of ~d~QaD in (2.10), the 
evolution of the quantum system evolves by means of ~1, the classical 
deterministic operator, only. Thus, in this approximation scheme the only 
difference between the classical and quantum systems is due to the fact that 
the quantum averages are obtained using the phase space averages, i.e., 
averaging the classical trajectories over the appropriate pseudo-probability 
density. We apply this approximation method to the spin-boson system. 
More specifically, we solve the classical system of equations (2.9) by 
numerical integration and average the classical trajectories over the proper 
distribution function. 

To carry out the above program, we address the subtle problem of 
the form of the Wigner distribution for the spin-boson Hamiltonian. We 
analyze this in detail in the next section. 

3. S P I N - B O S O N  REDUCED W I G N E R  D ISTRIBUTION 

The quantum mechanical density matrix for the spin-boson system is 
written as follows: 

3 

jpj(q, fi; t) (3.!) 
j = l  
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where do is the 2 x 2 identity matrix, ~j ( j =  1, 2, 3) are the Pauli spin 
matrices, and t~j(t) ( j =  1, 2, 3) are the reduced density matrices defined as 

13o(t ) - Tr [/3(~, 0,/~; t)] (3.2) 
spin 

/Sj(t) = Tr [~j~(~, q,/~; t)] (3.3) 
spin 

If we substitute the density matrix (3.1) into (2.4) and then into (2.3) and 
use polar coordinates for the spin variables x j, we obtain the most general 
Wigner distribution: 

1 1 0  
pw(X,q,p;t)  4 n x O x 6 ( 1 - X )  pw, o(q,p;t) 

- 4--~ sin 0 cos ~b 6 ( 1 - x )  pw, l(q,p;t)  

1 ~? 
- 4---~ sin 0 sin ~b ~xx 6(1 - x) Pw, z(q, P; t) 

1 ~3 
- 4~ cos 0 ~xx 6(1 - x) P,.,3(q, P; t) (3.4) 

where 

x = (x~ + x2 2 + x~) 1/2 (3.5) 

and the p,j  are the contributions to the Wigner distribution associated with 
the reduced density matrices (3.2) and (3.3). Thus, it is straightforward to 
show that the time-dependent averages of interest are given by 

Tr[6#3(t)] = f dq f dp p,j(q, p; t), j =  1, 2, 3 

Tr[tS(t)3 = f dq 

Tr[0tS(t)] = f dq 

f dp P.o(q, P; t) 

f dp qpwo(q, p; t) 

(3.6) 

TrE  i,ll = f dq f dp pOwo/q, 

It is clear from (3.4) and the averages in (3.6) that the total Wigner 
distribution is primarily of mathematical interest only, while the physical 
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quantities of interest are obtained using the reduced Wigner distributions 
Pwj. Said differently, we cannot use (3.4) to numerically calculate the quan- 
tities of interest, whereas the reduced distributions in (3.6) directly lend 
themselves to computer calculations. To see this, we avoid using P w and 
determine the equations of evolution for the p~j. First, we eliminate the 
nonphysical part of the Wigner distribution by integrating p~(x, q, p; t) 
over all possible lengths x of the quantum dipole: 

i 

fiw(O, q3, q, p; t) = fo dx X2pw(X, O, O, q, P; t) (3.7) 

Second, we define the contracted Liouvillian 5~ as follows: 

= _ dxx  pw(x,O, ,q,p;t) (3.8) 

After straightforward but rather tedious calculations, we find 

~ / S w = ~  - P - ~ q + 1 2 2 q ~ p  Pw, o+-~n l 

+ sin0 os0{( +) } 
2~z -P-~q  + (22q Pwl + g~p  pw~ +a)~ 

sin 02xsin ~b _p_~q + Q2q ~P Pw2_e;opwl  _ 2gqpw3 + 

cos 0 - P  Q2q Pw3 + 2gqPw2 (3.9) + 5 7  7qq + 7pp 

Finally, comparing (3.9) with (3.8) gives the result 

& Pwo = - P  ~q + g-22q Pwo + g ~p Pw~ (3.10a) 

8 _ ~q g-fffiP pw~176 8 t P ,  l = +s Pwl + (3.10b) 

8t Pw2 = + ~'22q Pw2 -- COopw I -- 2gqPw3 (3.10C) 

8t Pw3 = § ~22q Pw3 + 2gqPw3 

Note that this 
tion to this set 

(3.10d) 

set of four partial differential equations is exact. The solu- 
of equations is completely equivalent to that of the quantum 
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spin-boson problem. We also emphasize that the mathematical structure of 
(3.10) for the reduced Wigner distributions is quite different from that 
obtained for Pw itself.(13) 

We now reformulate the dynamical equations for the Pwj into a more 
familiar representation. We define the probability vector as 

IPw(q, P; t) ) =Pwo(q, P; t)10) + Pwl(q, P; t)11) 

+ Pw2(q,p;t) 12)+Pw3(q,p;t)[3) (3.11) 

where the vector I J )  satisfies the orthonormality condition 

( j lk)=~j ,k ,  j , k = 0 ,  1, 2, 3 (3.12) 

Equations (3.10) recover the Liouville-like form 

3 
& IPw(q, P; t))=-71 IPw(q, P; t)) (3.13) 

where 

2 63 gC~ 

- ~Oo(12)(11 - 11) (21) -  2gq(12)(31 - 13)(21) (3.14) 

In this formalism, to any quantum observable A is associated a vector IA) 
and its time-dependent expectation value: 

( A ) ( t ) = f d q f d p  (AI exp(At)IPw(q, p ; 0 ) )  (3.15) 

This allows us to define an evolution operator for the observable IA): 

f dq f dp (A] exp(flt) ]pw)= f dq f dp (A(t) t pw) (3.16) 

where 

I-d(t)) = exp(Ft ) IA)  (3.17) 

Note t h a t / "  is the adjoint to /i, so that 

F =  - A  (3.18) 

The next step consists in making the assumption that the initial 
density matrix of the spin-boson Hamiltonian factors, 

fi(t = O) = d o +j~ (dj) 6j Ps(q,/~; t = 0) (3.19) 
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where PB(0,/~; t = 0) denotes the oscillator density matrix at the initial time 
t = 0. The probability vector (3.11) corresponding to this state is 

IPw) = P~w(q, P) [I O) 
3 ] 

+ ~2 (e j (O)) l  J )  (3.20) 
j = l  

where PBw(q, P) is the Wigner distribution corresponding to the density 
matrix ~e(O,/~). Note that the initial conditions on the spin-l/2 system are 
expressed in terms of the state vector: 

E 3 ] Ire) = I0> + ~ <,~j(O))> l J)  (3.21) 
j = l  

Using (3.16) and (3.20), we obtain 

(A) ( t )  = f dq f dp Pew(q, p)(z~l exp(h)  IA ) (3.22) 

where the scalar product (~l exp(h)  [A) is a function of the initial coor- 
dinates p and q, as is evident from the definition of ['. The quantum result 
is obtained from (3.22) by averaging the single trajectory (~l e x p ( h ) I A )  
over the ensemble distribution of initial conditions for the mode of the elec- 
tric field. It is important to note that the distribution function Pnw(q, P) in 
(3.22) is always well-behaved. To complete this procedure, we need the 
equations of motion for the trajectories (~1 exp(/~t) [A). 

As in (2.5), we are interested in the evolution of the spin operators. 
This leads us to the definitions 

xj(q, p; t )=  (~zt e x p ( h ) ] J )  

q(q, p; t )=  (~[ [exp(/~t)] q 10) 

p(q, p; t )=  (g[ [ exp(h) ]  p IO) 

(3.23) 

so the equations of motion for these variables are 

~l(t) = COoX2(t) 

22(t)= -COoXl(t)-2g(~] [exp(h) ]q  13) 

23(t) = 2g(~l [exp(h) ]q  12) 

O(t)=p(t) 

(3.24) 

[~(t) = -g22q(t) - gxl(t) 
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where the initial conditions are 

x j (q ,  p; 0 )=  (6j ) (0)  

q(q, p; 0 ) = q  (3.25) 

p(q,  p; O) = p 

We see that like (2.5), the dynamic equations (3.24) are not closed. In the 
Appendix we demonstrate that 

(hi [exp(/~t)]q 13)~  (hi [exp(/~t)]q [O)(n[ exp(/~t)[3) 
(3.26) 

(hi [exp(/~t)]q 12) ~ (hi [exp(/~t)]q 10)(~l exp(/~t)]2) 

which is equivalent to neglecting the contribution of 206  D in (2.6). This 
factorization leads to a closed set of classical equations that are correct to 
first order in the coupling constant g. A more complete discussion of this 
approximation in the resonant case (~Oo=(2) is given in the Appendix. 
Equations (3.24) in this approximation are 

~l(t)=COoX2(t) 

s ) = --~OoXl(t ) - 2gq( t )  x3(t) 

~3(t) = 2gq( t )  x2( t )  (3.27) 

4(t )  = p ( t )  

1)(t) = - - ~ 2 q ( t )  - gx~( t )  

which can be numerically integrated. 
This completes our approximation scheme. We integrate (3.27) to 

obtain the quantum result by averaging the classical trajectories over the 
following distribution of initial conditions: 

pw(X, q, p; t = O) 

= P B w ( q , p )  6 ( X 1 - - ( 6 1 ) ) ) 6 ( X 2 - - ( ~ z ) ) 6 ( X 3 - - ( r  (3.28) 

In the initial state the spin is specified separately from the coherent field 
and the two are assumed to have not as yet interacted. 

4. E R G O D I C I T Y  A N D  C H A O S  

In this section we analyze the behavior of the classical system obtained 
from the spin-boson Hamiltonian. As we pointed out earlier, the solution 
to the system (3.27) is chaotic for a certain range of parameter values. This 
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means that trajectories starting close together in phase separate exponen- 
tially and this initial correlation is lost after a certain time. An important 
aspect of this semiclassical chaos is the appearance of relaxation properties 
which are, in principle, unexpected in a system with a limited number of 
degrees of freedom. This is just the kind of system we have, two states for 
the spin-l/2 dipole and an oscillator representing the electric field. There- 
fore we would be tempted to say that the original semiclassical chaos, 
manifesting itself through erratic trajectories, is now replaced by a single 
regular but dissipative trajectory. 

One of the most widely accepted indicators of chaotic motion is the 
Lyapunov exponent for the trajectory. (27) In common practice the mean 
exponential rate of divergence of two initially adjacent trajectories is given 
by the Lyapunov exponent. For an M-dimensional set of differential equa- 
tions the definition of the Lyapunov exponent is 

7(Xo, co)= l i m  1 In [ d(x~ t) 1 t Ld(xo, ~ ' d(O) -~ 0 (4.1) 

where the separation between two initially adjacent trajectories at time t is 

d(xo, t )=  [IX(xo + e~o, t ) -  X(xo, t)l] (4.2) 

where 1[. I[ denotes the norm. Here X(Xo, t) is the trajectory at time t and 
X(xo, t = 0 ) = x  o. Further, e ,~ 1 and [[o)[t = 1. It is possible to show that 
there are M, possibly nondistinct, Lyapunov exponents, corresponding to 
the M possibly independent directions of e), and these do not depend on 
the choice of metric for the space. 

The computation of the Lyapunov exponent is, in general, a nontrivial 
task. It is much easier to obtain the largest exponent for a given trajectory. 
Using the method of Benettin et aL, (28) we have calculated this exponent for 
different values of the parameters. The main computational results can be 
summarized as follows: 

1. The trajectories have the greatest Lyapunov exponents in the reso- 
nant case, g2 = co o. In Fig. 1 we see that the exponents are negligibly small 
and positive for the coupling coefficient g~< 10. There is, however, a 
threshold in the largest Lyapunov value in the neighborhood of g = 11, 
after which the exponent clearly becomes large and positive. The 
dependence of the largest Lyapunov exponent is an increasing function of 
g on the average. We conclude from this figure that the trajectories are 
regular for g~< 10 and chaotic for g~> 11. 

2. When the spin-boson system is no longer in resonance (COo-r 
the largest exponent is on the order of 0.1 for most values of g, including 
those that are very large. 
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Fig. 1. 
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The largest Lyapunov exponent of the set of differential equations (3.27) as a function 
of the coupling strength g. The parameters used are ~o o = .(2 = 27z and ti = 5. 

The Berry-Vorhos hypothesis states that  the Wigner  distr ibution for 
the s ta t ionary  state of an ergodic system is given by the microcanonical  
distribution. (29'3~ We directly verify this hypothesis  in the present  case by 
noting that  a system is called ergodic if the t ime average and the phase 
space average are equal. If  f ( y )  is an integrable function of a representat ive 
phase space point  y, then the t ime average is 

1 ~ tO+T 
( f ) r =  l i r n  T J,0 f(y(t)) dt (4.3) 

and the phase  space average is 

( f > s - x ( E )  Ef(y)dSE=s(E) f 6(H(y)-E)dy (4.4) 

where dSE is an element of area  on a surface of constant  energy, which is 
invar iant  during the evolut ion of the system. The  quant i ty  X(E) is the total  
area of  the cons tant -energy surface and is defined as 

Z(E) = fsE dSe = f 6(H(y) - E) dy (4.5) 

and is the normal iza t ion  constant  in (4.4). 
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To understand the relation between time and space averages of the 
spin-boson system, we calculate the phase space average of the z compo- 
nent of the spin: 

( ,L ) s = I f dq f dp f dO f sin O cos O 

x 3 ( E +  �89 o cos 0 - g q  sin 0 cos ~b - �89163 2 - �89 

• 

1 2 1 _2~.1 --1 
• 3(E+�89 - S P  )]  (4.6) 

The integration over the variables q and p can be carried out easily and 
yields 

<a:>s-- f, do f aC)sin Ocos O ao f dOsin O 
E>0 s 

(4.7) 

where 

g2 
SE = 2E + coo cos 0 + ~-~ sin 2 0 cos 2 ~b (4.8) 

This last integration (4.7) must be performed numerically. We do this using 
a Monte Carlo integration method. The phase space average of ( 6 z )  is 
shown in Figs. 2-4 (solid line), together with the corresponding time 
average (dashed line) for different values of the energy and parameters of 
the system. The time average is done using the numerical solutions of the 
nonlinear equations of motion. 

In Fig. 2 we depict a strong (g = 20) resonant (co o = O) interaction for 
the spin-boson system. We can see that the average z component of the 
dipole is ergodic for a continuum of energy values, i.e., the time and phase 
space averages are essentially the same. Note that this is the chaotic regime 
for the semiclassical trajectories. This same behavior is evident in Fig. 3, 
where g = 11, but not in Fig. 4, where g = 5. In the latter case, when the 
largest Lyapunov exponent is very small, the deviation between time and 
phase space averages appears over most energy values. However, this 
deviation from ergodicity is not as marked as that in the nonresonant case 
shown in Fig. 5. In this latter figure there is no similarity between the two 

822/68/i-2-22 
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Fig. 2. Mean value of the z component of the dipole at the fixed energy E of the classical 
Hamiltonian corresponding to the set of equations (3.27). The full line is the theoretical 
prediction for the average over the microeanonical distribution. The dashed line is the numeri- 
cal time average [see (4.3)]. The parameters used are g = 20, o~0 = Q = 2~, fi = 5. 
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Fig. 3. Mean value of the z component of the dipole at the fixed energy E of the classical 
Hamiltonian corresponding to the set of equations (3.27). The full line is the theoretical 
prediction for the average over the microcanonical distribution. The dashed line is the numeri- 
cal time average [see (4.3)]. The parameters used are g = 11, co 0 = / 2  = 2% t~ = 5. 
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Fig. 4. Mean value of the z component of the dipole at the fixed energy E of the classical 
Hamiltonian corresponding to the set of equations (3.27).The full line is the theoretical predic- 
tion for the average over the microcanonical distribution. The dashed line is the numerical 
time average [see (4.3)]. The parameters used are g = 5, co o = Q = 2~, fi = 5. 
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Fig. 5. Mean value of the z component of the dipole at the fixed energy E of the classical 
Hamiltonian corresponding to the set of equations (3.27). The full line is the theoretical 
prediction for the average over the microcanonical distribution. The dashed line is the numeri- 
cal time average [see (4.3)]. The parameters used are g = 20, coo = 0.01, ~Q = 2g, fi = 5. 
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averages. This means that the trajectories are constrained away from some 
regions of the energy surface in phase space. Note that this is the situation 
even in the case where the largest Lyapunov exponent is positive but small. 

5. OTHER N U M E R I C A L  RESULTS 

Let us now turn our attention from the semiclassical equations (3.27) 
to the purely quantum system (3.24). We select an initial state in which the 
spin-l/2 dipole is in a pure state aligned along the z axis (x3 = 1) and the 
electric field is in a coherent state. The ensemble distribution for the initial 
state is then 

1 
pw(X,  q, p; t = 0) = - exp{ - [01 /2q  - (2ti)m] 2 } 

7g 

x exp ( -  ~ - ) 6 ( x 3 - 1 ) 6 ( x 2 ) 6 ( x l )  (5.1) 

Note that the coherence assumption for the Bose field gives rise to a 
Gaussian distribution in both q and p, where ~ is the average number of 
bosons in the field. 

In Section 4, where we first discussed the numerical calculations, it 
became evident that the neglect of ~Q~D, the approximation made in going 
from the quantum phase space equations (3.24) to the semiclassical ones 
(3.27), is only valid for the system out of resonance and for small coupling 
strengths g. Of course this is precisely the parameter range where the semi- 
classical equations have regular trajectories for solutions. 

In Fig. 5 we compare the average z component of the spin operator 
calculated using (3.24) and averaging over the initial distribution (5.1) with 
the theoretical prediction of Bonci, Grigolini, and Vitali (BGV). (19) The 
BGV prediction is closely related to the well-known treatment of quantum 
dissipation of Leggett and co-workers. (31) A detailed discussion of the 
merits and limitations of the former theoretical approach is given by Vitali 
and Grigolini,/32) who stress that in these latter approaches the reaction of 
the field to the evolution of the spin is neglected, thereby inadvertently sup- 
pressing important nonlinear effects. In Fig. 6a we observe that the inter- 
acting system without the backreaction yields a BGV prediction obtained 
from integrating the Liouville-von Neumann equations which coincides 
with averaging over the semiclassical trajectories using (3.22). Both calcula- 
tions yield results for the spin-field system in which the boson field does not 
react and which is characterized by collapses and revivals. After an initial 
collapse followed by a long quiescent interval the average value of 6z 
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Fig. 6. (a) ... (b) Entropy of the spin-l/2 dipole as a function of time [see (5.3)]. The dashed 
line denotes the theoretical maximum value for the entropy. The parameters used are the same 
as those of (a). 

suddenly begins to oscillate for a time and then collapses again. This 
behavior repeats again and again. 

The phenomenon of collapse and revival is obtained via an averaging 
of different trajectories and is due to the quasiperiodic nature of the semi- 
classical trajectories leading to interference effects. Note that this classical 
system is not ergodic. According to the BGV interpretation, the collapse 
observed in Fig. 6a depends on a "multiplicative stochastic" process 
formally equivalent to Kubo 's  stochastic coefficient (frequency) based on 
random fluctuations external to the system; in the present model the multi- 
plicative fluctuations are generated by the dynamics of a single quantum 
oscillator. Semiclassical trajectories with different initial conditions are 
characterized by slightly different "oscillation frequencies" in the non- 
chaotic case and interference between these different members of the 
ensemble yields a Gaussian decay in time of the average spin-l/2 operators. 
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This functional form of the collapse was also obtained by K u b o  (33) for his 
stochastic oscillator and by Cummings (34~ for the JCM. It has therefore 
been concluded by a number of investigators that this phenomenon of 
collapse corresponds to a relaxation process. If it were a true relaxation 
process, however, the revival would not follow. 

In any event our approximation scheme for the Wigner distribution 
does very well in following the results obtained from the numerical integra- 
tion of the Liouville-von Neumann equation in the parameter regime far 
from resonance when the L~Q~ D term is neglected. It works well even 
for strong coupling (g=20) ,  which was not expected. However, this 
coincidence breaks down in the case of resonance. 

In Fig. 7a the two procedures agree during the first collapse of (dz) ;  

^ 

o.o 
v 

-0.5 

(a) 

0!, 1!0 , 5 '  ' ' ' '2!0 2!, ~!0 
t (arbitrary units) 

07  . . . . . .  

!i 
o.3 

0.2. 

0 .0  

0 .0  

(b) 

0.5 t.0 1.5 2'.0 2!5 3!0 
t (arbitrary units) 

Fig. 7. (a) Mean value of the z component of the spin operator as a function of time. The 
solid curve is the prediction from the numerically integrated equation of motion; the dashed 
line is the result obtained by averaging the trajectories of (3.27) over the initial distribution 
of (5.1). The parameters used are g = 20, m0 = I2 = 2n, ~ = 5. (b) Entropy of the spin-1/2 dipole 
as a function of time [see (5.3)]. The dashed line denotes the theoretical maximum value for 
the entropy. The parameters used are the same as those of (a). 
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however, the subsequent predicted evolution of the system when e) o = (2 is 
quite different. It is apparent that in this parameter regime, where the semi- 
classical motion is chaotic, the averages over trajectories starting from dif- 
ferent initial conditions give regular motion characterized by a relaxation 
process. Using the method of Benettin et aL, we evaluate the Lyapunov 
coefficient 2, which in the case of Fig. 7a turns out to be on the order of 
unity. It is worthwhile to point out that unlike the Kubo relaxation process 
discussed above, the decorrelation mechanism is here given by the internal 
dynamics of the spin-boson system rather than being external as in the 
stochastic fluctuations of Kubo. 

As we said with regard to Fig. 7a, we depict two results of averaging 
in which the effects of chaotic trajectories are included. One uses (3.27), in 
which 5~QG o is neglected, and another takes the full Hamiltonian dynamics 
into account by numerical integration of the Liouville-von Neumann 
equatons of motion. We refer to the latter as the exact calculation. We see 
in Fig. 7a that at the end of the standard relaxation process the system 
reaches a sort of thermodynamic equilibrium and that all revivals after the 
first are suppressed. It is clear that the collapse is now irreversible due 
to the subsequent incoherence of the chaotic trajectories. This is even 
more evident in the dashed curve for the average over the semiclassical 
trajectories, thereby not including the QGD. 

The curve labeled exact in Fig. 7a includes the antidiffusional effects of 
QGD and shows a clear peak where the first revival is depicted in Fig. 6a. 
It has already been remarked that the QGD mechanism becomes essential 
in the presence of thermal fluctuations. It is possible to show that in the 
resonant case the QGD mechanism might be significant even in the case of 
weak spin-field coupling. Our numerical results indicate that the same 
parameter values that trigger chaos in the semiclassical trajectories also 
stimulate the QGD mechanism. We are thus lead to conclude that the 
QGD mechanism reacts against the spreading of chaotic trajectories, i.e., 
the relaxation process, and tends to recover, at least in part, the original 
correlations in the initial state. 

We test the above interpretation by numerically integrating the 
Liouville-von Neumann equations for the density matrix and taking the 
trace over the field variables to obtain the spin density matrix r 

r Tr l-iS(t)] (5.2) 
boson 

and defining the entropy for the spin-l/2 dipole as 

S =  - Tr [tSs(t ) In ~s(t)] (5.3) 
spin 
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We see in Fig. 6b that the entropy S of the dipole subsystem monotonically 
increases until it reaches its maximum value (ln 2 = 0.693) at the end of the 
collapse process. However, once attained, the maximum entropy is even- 
tually lost, the order of the spin system being restored by continued inter- 
action with the boson field. The entropy monotonically decreases beyond 
its maximum to a minimum in the interval of the revival. This behavior of 
the entropy clearly indicates that the dynamics of the mixed state of the 
spin-l/2 dipole is reversible, i.e., it is not ergodic in this parameter 
regime. (15~ 

In Fig. 7b the entropy is calculated using the spin distribution, 
numerically determined by the full nonlinear dynamical equations, i.e., 
those in which the backreaction of the boson field is included. We note 
that the entropy monotonically approaches a plateau, as it should for an 
irreversible process. However, in the vicinity of the first revival, a ghost is 
observed in the form of a slight decrease in the entropy. This blip indicates 
a competition between the irreversible effects of chaos and the reversible 
effects of QGD, both of which are present in the exac t  calculation. 
It is clear, however, that in this case the effects of chaos are essentially 
irreversible.(15) 

6. C O N C L U S I O N S  

The generalized Wigner distribution is a useful tool for obtaining an 
approximation to the nonlinear dynamic equations describing the evolu- 
tion of a quantum mechanical system. Using the spin-boson Hamiltonian, 
we found that in the far-from-resonance situation, this approximation 
recovers the exac t  quantum result. In the resonant case, that corresponding 
to the chaotic regime for the semiclassical trajectories, the Wigner method 
as used here breaks down. However, the technique provides a new insight 
into the evolution of quantum systems through the separation of the 
Liouville operator into the two parts L~ol and ~QGo. 

In the above framework the semiclassical description of the system 
evolution is given by 5eel. In certain parameter regimes we find that s 
leads to chaotic trajectories which in and of themselves lead to dissipation 
in the quantum domain due to interference in the appropriate averages. 
The second operator ~@QGo has a diffusionlike structure, but the state 
dependence of the "diffusion coefficient" results in its not being positive- 
definite and has been recently 'shown (14) to compete with thermal diffusion 
to fulfill the quantization prescription of quantum mechanics. This second 
operator provides the mechanism for the "quantum suppression of classical 
chaos" discussed in ref. 12. Let us contrast these results with the traditional 
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picture of a quantum system coupled to a heat bath. Quantum dissipation 
in these earlier models arises from the infinite number of degrees of freedom 
in the bath, which for technical reasons is generally treated as being linear 
(e.g., ref. 35). In the present paper, however, dissipation is found to also be 
a quantum manifestation of the chaos in the semiclassical trajectories. This 
latter dissipation has nothing to do with the traditional "heat bath" and is 
a consequence of the nonintegrability of the spin-boson Hamiltonian. Thus, 
quantum irreversibility is herein not a many-body effect, but rather one due 
to an implicit nonlinearity leading to chaos. 

A P P E N D I X  

Herein we examine the degree of validity of the factorization 
approximation (3.25) by introducing the correlation function 

C(t) = (re t [exp(/"t)] 0 1 3 ) -  (7~1 [exp(/~t)] 0 10>%~cl exp(/~t)13> (A.1) 

where the evolution operator is given by (3.18) and (3.14). The expansion 
of C(t) to increasing orders of the coupling parameter g is carried out as 
follows: 

exp[([" o + g['~)t] 

= [exp(/"0t)] 1 + [exp( - /~or ) ]  g/~l 

x exp[(/~o + g/~l)Z] d r ;  
) 

(A.2) 

where the evolution operator has been separated into the two pieces 

o q+l 
P~ = 2qEp 13 >(21 - 1 2 ) ( 3 1  ] - 7 -  [ l O ) ( l l  + I1 >(OI ] op 

(A.3) 

We introduce (A.2) into (A.1) and observe that the lowest order term 
in g, i.e., g =  0, has a vanishing correlation function: C(t; g = 0 ) =  0. The 
next-order terms in g are given by 
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C(t) ~- g(Tz] ff  {exp[- - /~o(r  - t)] }/~1 exp(/~o r) 13 > 

- g(nd { e x p [ - / ~ o t ] } q  10) 

f2 x (~[ {exp[ - /~o(r - t)] }/~1 exp(/~oz) 13 ) d~ 

- g(~[ exp(/~o t) 13) 

f2 x (~l { e x p [ - / ~ o ( Z -  t)] }/~1 exp(/~o r) r0) dr + O(g 2) (A.4) 

where, using (A.3), we obtain 

[exp( - Po t ) ]  F1 exp(Por) 

=2g(qcosl2t+Psint2t) 

x [ - ( J3 ) (21-  j2 ) (31)cos  COot+ (13)(iF + [1)(31) sin COot] 

sin_O, 0_'] 
- g  (~p cos s f2 OqJ 

x [(10)(11 + I 1 ) ( 0 l )  cos co0t + (12)(01 - 10)(21) sin coot] (m.5) 

Without writing out the explicit expressions for the correlation function to 
O(g2), it is clear that in the resonant case ((2 = COo) the integrals over time 
in (A.4) result in secular terms. These terms remain bounded in the non- 
resonant case. In other words, when COo = (2, our factorization approxima- 
tion neglects terms proportional to time and therefore is at best accurate 
for some small time interval. To be more precise, the method is correct 
when the coupling parameter is less than either of the two frequencies and 
the detuning parameter g < A = ICOo - OI. 
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